A Curvilinear Method for Large Scale Optimization Problems
نویسندگان
چکیده
We present a new matrix-free method for the computation of the negative curvature direction in large scale unconstrained problems. We describe a curvilinear method which uses a combination of a quasi-Newton direction and a negative curvature direction. We propose an algorithm for the computation of the search directions which uses information of two specific L-BFGS matrices in such a way that avoids both the calculation and the storage of the approximate Hessian. Explicit forms for the eigenpair that corresponds to the most negative eigenvalue of the approximate Hessian are also presented. Numerical results show that the proposed approach is promising. Keywords— large scale unconstrained optimization, curvilinear search, negative curvature direction, eigenvalues, eigenvectors, power inverse method, quasi-Newton method
منابع مشابه
A limited memory adaptive trust-region approach for large-scale unconstrained optimization
This study concerns with a trust-region-based method for solving unconstrained optimization problems. The approach takes the advantages of the compact limited memory BFGS updating formula together with an appropriate adaptive radius strategy. In our approach, the adaptive technique leads us to decrease the number of subproblems solving, while utilizing the structure of limited memory quasi-Newt...
متن کاملA Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations
Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...
متن کاملCONSTRAINED BIG BANG-BIG CRUNCH ALGORITHM FOR OPTIMAL SOLUTION OF LARGE SCALE RESERVOIR OPERATION PROBLEM
A constrained version of the Big Bang-Big Crunch algorithm for the efficient solution of the optimal reservoir operation problems is proposed in this paper. Big Bang-Big Crunch (BB-BC) algorithm is a new meta-heuristic population-based algorithm that relies on one of the theories of the evolution of universe namely, the Big Bang and Big Crunch theory. An improved formulation of the algorithm na...
متن کاملDISCRETE AND CONTINUOUS SIZING OPTIMIZATION OF LARGE-SCALE TRUSS STRUCTURES USING DE-MEDT ALGORITHM
Design optimization of structures with discrete and continuous search spaces is a complex optimization problem with lots of local optima. Metaheuristic optimization algorithms, due to not requiring gradient information of the objective function, are efficient tools for solving these problems at a reasonable computational time. In this paper, the Doppler Effect-Mean Euclidian Distance Threshold ...
متن کاملروش به روز رسانی متقارن از مرتبه اول برای حل مسایل بهینه سازی مقیاس بزرگ
The search for finding the local minimization in unconstrained optimization problems and a fixed point of the gradient system of ordinary differential equations are two close problems. Limited-memory algorithms are widely used to solve large-scale problems, while Rang Kuta's methods are also used to solve numerical differential equations. In this paper, using the concept of sub-space method and...
متن کامل